Tampilkan postingan dengan label grafik persamaan kuadrat. Tampilkan semua postingan
Tampilkan postingan dengan label grafik persamaan kuadrat. Tampilkan semua postingan

Sabtu, 12 Oktober 2019

MENYELESAIKAN SOAL GRAFIK FUNGSI KUADRAT


MENYELESAIKAN SOAL GRAFIK FUNGSI KUADRAT.
.
Ivan Taniputera
08 Oktober 2019
.
1. Gambarlah grafik-grafik fungsi kuadrat sebagai berikut.
.
a. y=½x²
.
Ini merupakan persamaan kuadrat yang mempunyai sumbu y sebagai sumbu simetrinya dan titik (0,0) sebagai titik lembahnya. Untuk menggambar grafik fungsi kuadrat ini, kita akan membuat tabel sebagai berikut.
.
 
.
Dengan demikian grafik fungsi kuadrat itu melalui titik-titik (-3, 4,5), (-2, 2), (-1, 0,5), (0,0), (1, 0,5), (2,2), dan (3, 4,5). Kita dapat menggambarkannya sebagai berikut:
.

.
b.y=-½x²
.
Ini merupakan persamaan kuadrat yang mempunyai sumbu y sebagai sumbu simetrinya dan titik (0,0) sebagai titik puncaknya. Caranya sama dengan 1.a. Kita buat tabel sebagai berikut:
.
 ,
Dengan demikian grafik fungsi kuadrat itu melalui titik-titik (-3, -4,5), (-2, -2), (-1, -0,5), (0,0), (1, -0,5), (2,-2), dan (3, -4,5). Kita dapat menggambarkannya sebagai berikut:
.
 
.
c. y=x²+3x+2.
 
Untuk menggambar grafik persamaan kuadrat ini, kita faktorkan terlebih dahulu menjadi (x+1)(x+2).
Kita cari terlebih dahulu titik potongnya dengan sumbu x, yakni bila y = 0. Hal ini akan dipenuhi bagi nilai x: x1 = -1 dan x2 = -2. Dengan demikian, titik-titik potongnya terhadap sumbu x adalah (-1, 0) dan (-2, 0). Titik potong dengan sumbu y bila x = 0, sehingga y = 2. Dengan demikian, titik potongnya terhadap sumbu y adalah (0, 2).
.
Rumus koordinat titik puncak bagi persamaan kuadrat adalah:
xp = -b/2a.
Dalam hal ini, a = 1 dan b = 3.
Jadi, xp = -1,5.
Substitusikan nilai ini ke persamaan kuadrat.
yp = (-1,5)^2 + 3.(-1,5) + 2.
yp = 2,25 - 4,5 + 2
yp = -0,25.
.
Jadi titik puncaknya adalah (-1,5, -0,25).
.
Itulah sebabnya, grafik persamaan kuadrat ini akan melalui titik-titik (-1,0), (-2.0), (0,2), dan (-1,5, -0,25). Kita sudah dapat menggambarkannya sebagai berikut.
.

.
Bantuan pengerjaan soal matematika dan fisika berbayar, hubungi: https://www.facebook.com/ivan.taniputera
.