TENTANG BILANGAN PRIMA
ABOUT PRIME NUMBERS
Ivan Taniputera
14 Agustus 2013
Saya
mencoba merumuskan sebuah fungsi baru yang disebut fungsi generator
bilangan prima, yang dilambangkan dengan Gp (x). Domain fungsi adalah
bilangan asli, x e Bilangan asli. Kali ini x = {1,2,3,.....100}
Jika x = bilangan prima, maka Gp (x) = 1.
Jika x = bilangan non prima, maka Gp (x) = 0.
I try to compose a new function, which I call it "prime number generator function". The siymbol of it is Gp (x). Domain is all natural number, x e natural numbers. For our recent example, x = {1,2,.............100}. The rule is as following:
If x = prime number, then Gp (x) = 1.
If x = non-prime number, then Gp (x) = 0.
Maka berlaku sebagai berikut/ The result is as following:
x Gp(x)
1 0
2 0
3 1
4 0
5 1
6 0
7 1
8 0
9 0
10 0
11 1
12 0
13 1
14 0
15 0
16 0
17 1
18 0
19 1
20 0
dan seterusnya/ etc.
Jika diplot dalam bentuk grafik akan menjadi/ If it is plotted the result will be as following:
Berdasarkan gambar ini, saya mendapati bahwa jarak antara dua bilangan prima adalah maksimal lima bilangan berurutan. Ini berarti jika ada lima bilangan bukan prima secara berurutan, maka yang keenam pasti merupakan bilangan prima. Temuan ini hendaknya ditelaah lagi lebih jauh.
According to this plot, I find that the distance between two prime numbers is maximum five consecutive numbers. It means that after five consecutive non prime numbers, the sixth should be prime number. This finding should be analyze further.
Jika x = bilangan prima, maka Gp (x) = 1.
Jika x = bilangan non prima, maka Gp (x) = 0.
I try to compose a new function, which I call it "prime number generator function". The siymbol of it is Gp (x). Domain is all natural number, x e natural numbers. For our recent example, x = {1,2,.............100}. The rule is as following:
If x = prime number, then Gp (x) = 1.
If x = non-prime number, then Gp (x) = 0.
Maka berlaku sebagai berikut/ The result is as following:
x Gp(x)
1 0
2 0
3 1
4 0
5 1
6 0
7 1
8 0
9 0
10 0
11 1
12 0
13 1
14 0
15 0
16 0
17 1
18 0
19 1
20 0
dan seterusnya/ etc.
Jika diplot dalam bentuk grafik akan menjadi/ If it is plotted the result will be as following:
Berdasarkan gambar ini, saya mendapati bahwa jarak antara dua bilangan prima adalah maksimal lima bilangan berurutan. Ini berarti jika ada lima bilangan bukan prima secara berurutan, maka yang keenam pasti merupakan bilangan prima. Temuan ini hendaknya ditelaah lagi lebih jauh.
According to this plot, I find that the distance between two prime numbers is maximum five consecutive numbers. It means that after five consecutive non prime numbers, the sixth should be prime number. This finding should be analyze further.