BERMAIN-MAIN DENGAN FUNGSI SURFACE
Ivan Taniputera
29 Agustus 2013
Saya
baru saja mengunduh sebuah software yang dipakai menggambar persamaan
surface 3 dimensi, yakni K3DSurf. Adapun linknya adalah http://k3dsurf.sourceforge.net/.
Sofware ini sangat bagus dan saya juga mencoba membuat beberapa persamaan surface, seperti:
F(x,y,z) = 5*x^2+log(1/y^2)+cos(z)
Adapun gambar hasilnya adalah sebagai berikut:
F(x,y,z) = 5*x^2+log(1/y^2)+cos(z)-sin(x)+cos(y)-(1/z)
F(x,y,z) = sin(x)+cos(y)+cos(z)
F(x,y,z) = sin(1/(x))+cos(1/(y))+cos(z)
F(x,y,z) = log(x^2)+log(y^2)+log(z^2)
F(x,y,z) = 1/x^2+1/(y^2-9)+sin(z^2)
F(x,y,z) = sqrt(cos(x))-sin(1/(x^3+5*x^2-x+3))+log(cos(z+1))
F(x,y,z) = sin(x)+sin(y)+sin(z)
F(x,y,z) = tan(x)+cos(y)+sin(z)-x^2+y^2+z^2-3
F(x,y,z) = 1/cos(x)+1/cos(y)+1/cos(z)
F(x,y,z) =
sin(x)+sin(y)+sin(z)+cos(x)+cos(y)+cos(z)+log(x)+log(y)+log(z)
F(x,y,z) = x*x*y+x*y*y+x*x+2*y*y+z*z*x
F(x,y,z) = log(x^2)+sqrt(1/x)+cos(y)+sin(z+2)
F(x,y,z) = x*x + y -z*z+cos(x)+cos(2*x)+cos(3*x)+3*cos(4*x)+cos(y)+cos(2*y)+cos(3*y)+cos(z)
F(x,y,z) = (sqrt(x*x+y*y)-5)^8+ z*z*z -1+sin(x)+sin(y)+sin(z)+cos(x)+cos(y)+cos(z)
F(x,y,z) = x*cos(x)+y*cos(y)+z*cos(z)+x*y*z
F(x,y,z) = (sqrt(x*x+y*y)-3)^3 + z*z - 1+sin(x)+sin(y)+sin(z)+cos(x)+cos(y)+cos(z)
F(x,y,z) = x*cos(3/x)+y*cos(3/y)+z*cos(3/z)+x*y*z
F(x,y,z) = (sqrt(x*x+y*y)-3)^2 + z*z -1+x*cos(1/5*x)+y*cos(1/5*y)+z*cos(1/5*z)
F(x,y,z) = (sqrt(x*x+y*y)-3)^2 + z*z -1+x*cos(10*x)+y*cos(10*y)+z*cos(10*z)
F(x,y,z) = (sqrt(2*x*x+2*y*y)-3)^2 + sqrt(z*z-9)-20*cos(x*y*z)
F(x,y,z) = 3*x^2*sin(x)+3*y^2*sin(y)+3*z^2*sin(z)
F(x,y,z) = 5*x^2*sin(1/x)+5*y^2*sin(1/y)+5*z^2*sin(1/z)+x^2+y^2+z^2